
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 5, NO. 4, DECEMBER 2008 227

A General Framework for
Benchmarking Firewall Optimization Techniques

Ghassan Misherghi, Lihua Yuan, Zhendong Su, Chen-Nee Chuah, and Hao Chen

Abstract—Firewalls are among the most pervasive network
security mechanisms, deployed extensively from the borders of
networks to end systems. The complexity of modern firewall
policies has raised the computational requirements for firewall
implementations, potentially limiting the throughput of networks.
Administrators currently rely on ad hoc solutions to firewall
optimization. To address this problem, a few automatic firewall
optimization techniques have been proposed, but there has
been no general approach to evaluate the optimality of these
techniques. In this paper we present a general framework for
rule-based firewall optimization. We give a precise formulation
of firewall optimization as an integer programming problem and
show that our framework produces optimal reordered rule sets
that are semantically equivalent to the original rule set. Our
framework considers the complex interactions among the rules
in firewall configurations and relies on a novel partitioning of
the packet space defined by the rules themselves. For validation,
we employ this framework on real firewall rule sets for a
quantitative evaluation of existing heuristic approaches. Our
results indicate that the framework is general and faithfully
captures performance benefits of firewall optimization heuristics.

Index Terms—Firewall optimization, ACL optimization, fire-
wall management, ACL partitioning.

I. INTRODUCTION

F IREWALLS are widely deployed in the current Internet
as defense mechanisms to block unwanted traffic. With

this ubiquity, many factors have led firewall configurations
to become increasingly complex, including the introduction
of new protocols and the regular discovery of worms. These
factors reflect the increased functionality and utilization of the
Internet. As one would expect, the computational requirements
for enforcing these policies have risen over the years.

In the most abstract sense, firewalls are mechanisms that
enforce network policies. Firewalls are best suited to net-
work policies that involve defining the communication access
privileges between networks or hosts. These access privileges
most typically involve network, protocol, session, and host
restrictions. Firewalls enforce these policies by mediating the
communication among hosts in different networks. Upon re-
ceiving a packet, a firewall checks the packet’s header against

Manuscript received June 13, 2008. and accepted Feb. 26, 2009. The
associate editor coordinating the review of this paper and approving it for
publication was J. L. Hellerstein.

This research was supported in part by NSF NeTS-NBD Grant No.
0520320.

L. Yuan is with Microsoft (e-mail: lyuan@microsoft.com).
G. Misherghi is with Google (e-mail: ghassan@gmail.com).
Z. Su, C.-N. Chuah, and H. Chen are with the University of California,

Davis (e-mail: {su, chuah, hchen}@ucdavis.edu).
This work was done while G. Misherghi and L. Yuan were with the

University of California, Davis.
Digital Object Identifier 10.1109/TNSM.2009.041104

a set of user-specified rules (inspection) and forwards/drops
the packet if it is desired/undesired (filtering). Through packet
inspection and filtering, firewalls can intercept suspicious
packets and prevent them from passing through. A firewall
can enforce a complete network-wide access policy if all
incoming/outgoing packets are configured to pass through the
firewall.

Although packet inspection and filtering help improve net-
work security, it is important to ensure that they do not
encumber the availability and utility of the entire system. A
firewall cannot forward a packet until inspection has finished.
Therefore, inspection will incur additional latency to packets.
With limited buffer space, prolonged packet inspection time
may also cause the firewall to drop packets indiscriminately.
The performance of a firewall should not be mitigated when
under attack, otherwise its purpose would have been defeated.
Although one could expect the rapid advancement of hardware
to help alleviate this challenge, hardware upgrades may not
always be practical. In addition, the increasingly popular
deep packet inspection (DPI), which requires application-
level interpretation of the packet data payloads, may incur
additional performance overhead, outweighing the benefits
provided through better hardware. We believe that firewall
performance will remain a challenging issue.

The key component of a firewall configuration is the access
control list (ACL). An ACL consists of an ordered list of rules,
each with a predicate that describes which packets are matched
by this rule and the action to be taken on matched packets.
Contemporary firewalls provide numerous actions: a packet
may be dropped, accepted, sanitized, transformed, logged, and
nearly any combination thereof. A rule-based firewall maps
the logic specified in the ACL to a list data structure. A
packet is compared with each rule successively in the sequence
until the first matching rule is found, and the action for this
rule is taken on the packet. Many firewall implementations
have slightly different semantics, such as last matching, last
with first matching, and conditional subsequences. However,
all these variations are equivalent to the first matching rule
semantics, as can be shown through straightforward rule
transformations. Rule-based firewalls, with popular models
such as Cisco System’s PIX firewall [6], Linux’s Netfilter [15],
and the BSD Packet Filter [14], are widely used in production
networks.

Checking a packet against rules takes processing time, and
thus to minimize firewall load and latency one can reduce the
number of checks required for packet processing. Previous
research has proposed a number of techniques to reorder
the rules for better firewall performance [1, 7, 8, 12]. These

1932-4537/09$25.00 c© 2009 IEEE

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 1, 2009 at 12:59 from IEEE Xplore. Restrictions apply.

228 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 5, NO. 4, DECEMBER 2008

proposed techniques are heuristic and do not produce optimal
rule reorderings. They either profile the rules to determine
their importance (e.g., by maintaining counters on rules as
they match packets) or model dependencies among rules (e.g.,
by checking whether the rules intersect but have different
actions). This is imprecise because these techniques do not
accurately capture the complex interactions among the rules
(see Section V for a detailed discussion and examples).
Without an approach that produces optimal rule reorderings,
it is difficult to evaluate the relative benefits of firewall
optimization techniques.

In this paper, we develop a general framework for rule-
based firewall optimization. Our framework precisely captures
the semantics of an ACL in terms of whether each packet is
accepted or rejected. To achieve this, it divides the packet
space into independent partitions to correctly consider the
changed set of packets matched by rules as the packets are
processed within an ACL. In addition, compared to existing
approaches, we require only that the action taken for each
packet remains the same, rather than the rules themselves.
With such a precise model, our framework is able to find the
optimal rule reordering. Thus, it can also be used to compare
and evaluate other optimization approaches and understand
their practical benefits or limitations. This paper chooses to
focus more on the optimality of rule orders generated by the
optimization because its direct impact on firewall performance.
We put less focus on the running times of the optimization
algorithms because it does not affect firewall performance and
is an one-time offline process. We also limit our scope to
optimization techniques for rule-based firewalls with stateless
packet inspection. Optimizing application-based firewalls with
stateful and deep packet inspection would require a significant
extension to the existing techniques and is beyond the scope
of this paper.

We summarize the main contributions of this paper:
• It provides the first algorithm that, given an ACL and a

traffic profile, produces the optimal reordered rules. The
algorithm is based on a novel rule-based partitioning of
the packet space and a reduction to integer programming;

• It formally establishes the correctness of the algorithm.
The proof is through a semantic formalization of firewalls
and their equivalence, and an equivalence argument con-
necting this formalization with the reduction to integer
programming; and

• It provides an evaluation framework for rule-based fire-
wall optimization techniques because of the guarantee
of optimal rule reordering. In particular, it has been
used to empirically evaluate two representative heuristic
algorithms [8, 12] and an additional one introduced in
this paper on production firewall configurations. Results
indicate that it is effective for understanding the trade-
offs of firewall optimization techniques.

The rest of the paper is structured as follows. Section II
shows an example network and policy that we will use
throughout the paper to illustrate our approach. Section III
presents details of our optimization algorithm, followed by
a formal analysis of its correctness (Section IV). Then, in
Section V, we discuss two representative existing approaches
and introduce a new heuristic approach for rule-based firewall

Internet

DMZ
HTTP Server

SMTP Server

Proxy Server

Private Network

Workstations Servers

Router

Fig. 1: An example network topology.

1: allow dnet DMZ dport http
2: allow dnet DMZ dport mail
3: deny dport sql
4: allow snet DMZ dnet Internet
5: allow snet Private dnet DMZ
6: deny all

ACL 1: An ACL to enforce the required policy for the network
shown in Figure I.

optimization. Finally, Section VI presents results of our em-
pirical evaluation of these approaches within the framework,
and Section VII concludes the paper.

II. EXAMPLE NETWORK AND POLICY

To illustrate the application of our framework, we will apply
it to a simple, though realistic example. Figure 1 depicts
the network topology for this example. The router shown
in the figure mediates all communication among the private
network, the demilitarized zone (DMZ), and the Internet. For
this network, we assume the following required policy:

(R1) Communication sessions initiating from the Internet
are only allowed for http and smtp connections to
the DMZ servers;

(R2) Communication sessions initiating from the private
network are not allowed to the Internet. Instead, users
must make external requests through the proxy server
in DMZ;

(R3) Communication sessions initiating from the DMZ to
the private network are not allowed; and

(R4) Due to the prevalence of worms, any inter-network
communication to database servers is not allowed.
This requirement takes precedence over the first
three.

A network administrator may choose to use a firewall to
enforce this policy. Conveniently, all inter-network communi-
cation must travel through the router shown in Figure ??. We
will assume that the administrator installs a firewall there.

For this example, we will use a simple ACL language,
abstracting many protocol details. A single rule begins with
the action (allow or deny), followed by the predicate against
which to check packets. The predicate is simply the con-
junction of several atoms, where a single atom is a require-
ment on the source/destination network of a packet (snet/dnet

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 1, 2009 at 12:59 from IEEE Xplore. Restrictions apply.

YUAN et al.: A GENERAL FRAMEWORK FOR BENCHMARKING FIREWALL OPTIMIZATION TECHNIQUES 229

(a) Overlapping rules

(b) The rule-based partition

Fig. 2: The packet space divided by ACL 1.

NETWORK) or the source/destination port of the packet
(sport/dport PORT). One can replace the predicate with the
keyword all, denoting that every packet shall be matched by
this rule.

ACL 1 illustrates how the above policy can be enforced.
Requirement R1 is achieved by the combined effect of Rule
1 (http) and Rule 2 (mail). Requirement R2 is achieved by
the combined effect of Rule 5, which allows the users in the
private network to initiate connections to the proxy server in
DMZ, and Rule 4, which allows the proxy server to initiate
connections to the Internet. Rule 3 enforces R4, which has the
highest priority in the policy. Rule 6 denies all other traffic,
which also implicitly enforces R3. This seemingly simple
configuration might be the result of thoughtful deliberation of
an administrator. Because packets matched by Rules 1 and 2
can never be matched by Rule 3, the administrator can choose
any ordering. One possible motivation to put Rules 1 and 2
earlier might be that the administrator expects more packets
to be matched by these rules. However, if Rule 3 were placed
behind Rules 4 and 5, database sessions from the DMZ to the
Internet or from the private network to the DMZ would be
incorrectly allowed. Therefore, even if Rules 4 and 5 might
match more packets and putting them earlier would reduce the
computation, the administrator cannot do so because of the
defined policy. Rule 6 ensures ACL will not permit any traffic
unintentionally and is the default behavior of most firewall
products.

III. OPTIMIZATION FRAMEWORK

Our framework consists of several steps: partitioning, pro-
filing, dependency generation, and optimization. The first
step, partitioning, is used to divide the packet space into
disjoint blocks according to the given ACL. The profiling

Algorithm 1 Partition the Packet Space

Require: |r| = n, n ≥ 0
Ensure: Γ is the rule-based partition

1: Γ← P
2: for i← 1 to n do
3: x← packets(ri)
4: for all γ in Γ do
5: if γ ∩ x = ∅ then
6: continue
7: else if x ⊂ γ then
8: Γ.append(γ \ x)
9: γ ← x

10: break
11: else if x ⊃ γ then
12: x← x \ γ
13: else
14: Γ.append(γ \ x)
15: γ ← x ∩ γ
16: x← x \ γ
17: end if
18: end for
19: Γ.append(x)
20: end for

step then measures the weights of blocks within the partition.
The next step, dependency generation, examines the partition
and rules to create a set of constraints on the positions of
rules to admit only semantically equivalent rule reorderings.
Finally, the optimization step uses information from previous
steps to produce an integer program whose solutions yield
semantically equivalent, optimal rule reorderings.

A. Rule-based Partitioning of Packet Space

Rule-based partitioning of the packet space is a key step
in our optimization framework. The (disjoint) blocks of the
partition are created such that for any two packets within a
single block, the same set of rules from the ACL matches
those two packets. This facilitates the correct optimization of
firewall rule configurations in two key ways: (1) since all
packets within a block will be matched by the same rule
in any reordering of the ACL, checking for correct block
action is sufficient; and (2) cost assignment can be attributed
to blocks rather than rules, thus making cost calculation
independent of the choice of rule ordering. As one shall
see from Section V, the weight of a rule, as used in some
optimization techniques, can actually vary on different Rule
5 order. Optimization techniques that failed to realize this
depedency will not discover the optimal rule order.

To explain rule-based partitioning, we first demonstrate it
on ACL 1. Figure 2a shows rectangles that represent the rules
of the ACL. Light rectangles denote rules that have allow
actions, while dark rectangles denote rules that have deny
actions. Notice that the rectangle containing the entire figure
represents Rule 6 (deny all). Two rectangles overlap when
the packets matched by the two corresponding rules intersect.
For example, Rule 6 matches all packets, so it contains all the
other rules. When two rules overlap, the rule that appears first

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 1, 2009 at 12:59 from IEEE Xplore. Restrictions apply.

230 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 5, NO. 4, DECEMBER 2008

in the ACL is placed above the other. With some reorderings
of the ACL, an intersecting region may change its action.
This implies that rule reordering would not treat all packets
identically. In essence, the problem of correct rule reordering
requires that the final “picture” must look identical. These
intersecting regions essentially represent sets of packets that
are matched by multiple rules. By viewing these regions
more precisely as disjoint blocks in a partition, we arrive at
Figure 2b.

As a motivation for later phases of our framework, notice
that we can infer several constraints on rule orderings from
the relationship of rules associated with the partition. Since
Rule 6 intersects with all the other rules, it must be placed
after all the other rules with an allow action. Rule 5 has the
most interesting relationships: it intersects with Rules 1, 2, 3,
and 6. We can infer that Rules 1, 2, and 5 can be placed in
any order relative to one another, while Rule 3 must be placed
before Rules 4 and 5.

Algorithm 1 produces a partition of the packet space where
packets in each block have the exact same set of matching
rules. The algorithm works by iterating over the rules in the
rule sequence, as seen in the outer loop on line 2. The loop
has a simple invariant: Γ describes a partition of P , the packet
space, where all packets in each block are matched by the
same rules from the first to the iEh rule. With an empty rule
sequence, the entire packet space is matched by no rules,
hence Γ consists of one block. When a single rule is added,
this partition will be split into two blocks: those packets that
are not matched by the first rule, and those that are. The
inductive step, from rule sequences of length i to i+1, is more
difficult. Suppose the packets matched by the next rule have
an intersection with some block γ in Γ. If the rule matches a
subset of γ (line 7), then γ must be split into two: the block
that also matches the new rule and the block that does not.
If the rule matches a superset of γ (line 11), γ remains the
same, but we must check for interactions of the remainder
of the packets with other blocks. If the rule and γ intersect
but neither is contained within the other (line 13), γ must be
split into two new blocks: one that is matched by the rule and
another that is not; while the remainder of the packets matched
by the rule but not in γ must be checked against other blocks.

If a rule intersects with all blocks in the current partition,
then the number of blocks doubles. Thus, in the worst case, the
number of blocks may be exponential in the number of rules.
While this raises complexity concerns, we expect in practice
ACLs do not have such complex interactions among rules.
Our empirical results in Section VI on production firewall
configurations confirm this.

For efficient computation, Algorithm 1 uses Ordered Binary
Decision Diagrams (BDDs) [5] to compactly represent blocks
and to compute the various set operations performed, such
as unions (∪), intersections (∩), and set differences (\). Yuan
et al. previously used BDDs to implement a static analysis tool
for checking misconfigurations in firewall configurations [20].
Their implementation is very scalable. For example, it takes
less than three seconds to check an ACL with more than 800
rules.

B. Partition Profiling and Rule Cost

A good metric for ACL cost is the expected time to process
a single packet. Intuitively, with a lower packet processing
time, the firewall can achieve higher throughput. To measure
the expected time, we need some representative distributions,
i.e., probability mass functions over all packets in the packet
space. For this discussion we denote the packet space as P ;
the ACL as r; the discrete random variable that assumes a
packet as X ; and the traffic profile as profile, a mapping from
packets to probabilities.

Assuming that cost is proportional to the number of checked
rules, the expected cost to process a packet is the sum, over
all packets in P , of the probability of the packet multiplied by
the number of rules checked for that packet. Assuming a unit
cost for all rule predicates, the expected cost can be stated as
the following:

E[cost(r, X)] =
∑
s∈P

profile(s)× cost(r, s)

where the cost to process a packet, cost(r, s), is the number
of rules that are checked against s. Assuming that ri is the
first matching rule for packet s, we have cost(r, s) = i.

Notice that with our rule-based partitions, the first matching
rule for all packets in a block is identical. So for some block
γ in Γ where the first matching rule is rj , for each packet s in
γ, cost(r, s) = j. We will use a single value cr,γ to denote the
cost required for each packet in γ. This allows us to rewrite
the expected cost as the following:

E[cost(r, X)] =
∑
γ∈Γ

(
cr,γ ×

∑
s∈γ

profile(s)

)

After continuing this factorization, we can sum the probabil-
ities of all packets within the block to produce a single weight.
Notice that these weight factors depend only on the traffic
profile and are independent of any rule order. This leaves us
with:

E[cost(r, X)] =
∑
γ∈Γ

(
cr,γ × weightγ

)
(1)

To apply this definition of cost, we must address the
measurement of traffic profiles for a given network and firewall
configuration. We assume that a traffic profiling tool will
provide the traffic statistics of each partition. Based on the
traffic statics for each partition, the weights can be normalized
so that the cost reflects the actual number of rules processed.
Traffic profiles are also likely to change based on times of
day and other factors. Therefore, it is necessary for the traffic
profiling tool to dynamically monitor the traffic and update
the traffic profile as needed. ProgME [19] is a highly scalable
traffic measurement tool that can achieve the requirements
here. ProgME allows administrators to write a small definition
for the partitions of interest and collects traffic statistics for
each partition directly.

We can apply this definition to our example, ACL 1.
Assume that the administrator selects a distribution of the
packet space such that the weights are determined to be as
shown in Table I. Assume that r is the initial ACL. The cost
for each block is shown in the third column of the table. The
final column shows a different permutation of the ACL, r′,

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 1, 2009 at 12:59 from IEEE Xplore. Restrictions apply.

YUAN et al.: A GENERAL FRAMEWORK FOR BENCHMARKING FIREWALL OPTIMIZATION TECHNIQUES 231

TABLE I: Weights for the blocks in ACL 1.

block weight cost(r) cost(r′)
{6} 0.02 0.12 0.12
{1, 6} 0.05 0.05 0.20
{2, 6} 0.05 0.10 0.25
{3, 6} 0.02 0.06 0.02
{4, 6} 0.30 1.20 0.90
{5, 6} 0.10 0.50 0.20
{1, 5, 6} 0.20 0.20 0.40
{2, 5, 6} 0.20 0.40 0.40
{3, 4, 6} 0.03 0.09 0.03
{3, 5, 6} 0.03 0.09 0.03
total 1.00 2.81 2.55

Fig. 3: An ACL demonstrating complex dependencies.

where the rules are reordered as 〈3, 5, 4, 1, 2, 6〉. This ordering
retains the same meaning, but has a lower cost. In the later
sections, we will show how our framework will select this
order.

C. Dependency Generation

We have seen that one can infer dependencies between the
relative positions of two rules that overlap, but with different
actions. For example, we noted in ACL 1 that Rules 3 and 5
intersect and have different actions, so Rule 3 must be placed
before Rule 5 in any valid reordering. While this reasoning
suffices for most dependencies, it can be too conservative
in general. Figure 3 shows an example where this form of
constraint dependence is not sufficient. Notice that all three
rules have a common intersection. Rule 3 has a different
action from those for both Rules 1 and 2. Were we to use
the above described dependencies, we would require that for
any valid rule ordering, Rule 3 must be placed after Rules
1 and 2. This is too conservative: if Rule 3 is placed after
either Rule 1 or Rule 2, the overlapping block will assume
the correct action and thus the rule ordering will be correct.
Thus, a dependency must not be between a rule pair. Instead,
it should be between a rule i and a block’s matching rules that
have a different action from that of rule i. We denote these
dependencies using the following format: i � {j, k, . . . , l}.
Such a dependency requires that rule i must follow the earliest
rule of {j, k, . . . , l}.

Algorithm 2 shows how these constraints can be generated.
It generates a dependency whenever there is a block with
conflicting rules (lines 2–4). For these conflicting blocks, a
dependency is generated for each rule with a different action
from the first matching rule (lines 3–4). The constraint requires

Algorithm 2 Dependency Generator
Require: r is an ACL, with Γ as the rule-based partition
Ensure: D contains a set of required dependencies

1: D ← ∅
2: for all γ in Γ do
3: for all x ∈ matchers(r, γ) do
4: if action(x) �= action(firstMatch(r, γ)) then
5: D ← D ∪ {x � matchersCorrectAction(r, γ)}
6: end if
7: end for
8: end for

that in any reordered ACL, the rule must be positioned after at
least one of the matching rules with the same action (line 5).
This flexible dependency relation of allowing any of the rules
with correct actions to be processed first requires exactly that
for all blocks and does not change the taken action. Intuitively,
this requirement is all that is necessary to ensure that all
packets are classified correctly.

For ACL 1, the dependencies are given by:

D =
{

4 � {3, 6}, 5 � {3, 6}, 6 � {1}, 6 � {2},
6 � {4}, 6 � {5}, 6 � {1, 5}, 6 � {2, 5}

}
The permutations that satisfy the dependencies D include:

〈1, 2, 3, 4, 5, 6〉 〈2, 1, 3, 4, 5, 6〉 〈1, 3, 2, 4, 5, 6〉
〈2, 3, 1, 4, 5, 6〉 〈3, 1, 2, 4, 5, 6〉 〈3, 2, 1, 4, 5, 6〉
〈1, 2, 3, 5, 4, 6〉 〈2, 1, 3, 5, 4, 6〉 〈1, 3, 2, 5, 4, 6〉
〈2, 3, 1, 5, 4, 6〉 〈3, 1, 2, 5, 4, 6〉 〈3, 2, 1, 5, 4, 6〉

After checking the cost of all permutations given the
weights listed in Table I, the permutation r′ = 〈3, 5, 4, 1, 2, 6〉
is found to be an optimal solution, with cost as shown in the
table. Of course, exhaustively listing all such permutations
is computationally expensive. To alleviate this, we formulate
the constraints and cost as an integer program in order to take
advantage of the modern advances in solving integer programs.

D. Integer Program Formulation

To formulate our problem as an integer program, several
high-level concepts must be modeled. The most obvious of
these is that the encoded solutions must describe some per-
mutations of the given ACL. We introduce Boolean variables
(over 0 and 1) to indicate where rules have been moved in
a particular solution’s ordering. These Boolean variables are
written as ri,j , and take the value 1 only when the ith rule in
the original ACL is moved to position j. Naturally, any rule
can be placed in any position, so i and j both range from
1 to the length of the ACL, n. The cost function described
in Equation 1 requires terms for each block in the rule-based
partition. Although the weight is constant, the cost function
requires a factor set to the least position of some set of
rules (the first matching rule for the block). Our dependency
constraints also require that rules be placed after the least
position of the same set of rules. This is difficult to model,
as there is no such minimum selection that can be inserted
directly into our linear equations. Our solution to this problem
is to introduce additional Boolean variables gi,j , set to 1 only
when the ith block in Γ is matched by the jTM rule in the

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 1, 2009 at 12:59 from IEEE Xplore. Restrictions apply.

232 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 5, NO. 4, DECEMBER 2008

encoded permutation. Let m be the number of blocks in Γ.
Consider the following integer program:
Minimize

m∑
i=1

wi

n∑
j=1

jgi,j

Subject to
(A)

∑n
j=1 ri,j = 1 ∀i ∈ [1, n]

(B)
∑n

i=1 ri,j = 1 ∀j ∈ [1, n]
(C)

∑n
j=1 gi,j = 1 ∀i ∈ [1, m]

(D)
∑n

j=1 jrk,j − jgi,j ≥ 1 ∀i, k � k ∈ after(i)
(E) gi,j −

∑
k∈matches(i)

rk,j ≤ 0 ∀i ∈ [1, m], ∀j ∈ [1, n]

where the auxiliary functions matches and after are defined
precisely in Section IV-B. Intuitively, matches maps a block
to its matching rules with the same action as its first matching
rule, while after maps a block to its matching rules with a
different action from its first matching rule.

Let us first address the choice for the optimization function.
As shown in Equation 1, the cost should be the sum of
block positions times their weights. Were the variables gi,j

set correctly so that for block i, gi,j is 1 only for the rule
with the least matching position at j, the inner sum would be
equal to that position j. This yields that the cost term for each
block is correctly equal to the weight of the block times the
position of the block. Our optimization function thus faithfully
computes the cost described by Equation 1. With a valid cost
function, we must now ensure the Boolean variables take the
correct values and describe a permutation.

The constraints labeled A ensure that a rule is moved
to exactly one position in the permutation. The constraints
labeled B ensure that there is no more than one rule in
each position of the permutation. Together they require that
solutions describe permutations of the ACL.

Constraint C ensures that a block has a matching rule. For
this formulation, we will assume that the ACLs have explicit
default policies placed at the end of the rulesets, so that this
is indeed always the case. We can explicitly place the implicit
rule at the end of the rule set for ACLs.

Constraint D ensures that the rules that must be placed after
the first matching rule of some block are placed so. This is
so because the summation requires that the term where ri,j

is set to one has a factor of j, while the first matching rule
where gi,k is set, has a factor k where k < j. All other terms
are zero, hence the total sum must be greater than zero.

Constraint E ensures that the gi,j is set to one of the
matching rules for block i that has the correct action. We can
see that for any equation where gi,j is zero, the equation holds
trivially. When gi,j is nonzero, one of the matching rules must
be set for the equation to hold true.

Notice that the Boolean variables, meant to be the “first
matching” positions for blocks, may in fact be set to any
matching rule for a block. However, if the variable was not set
to the first matching position, the cost function could be further
optimized by setting it so. Also, a higher position would incur
more restriction on rules that have different actions for the
block, so it would not necessarily yield the optimal order. In
an optimal ordering, the position would be set correctly, hence
the integer program formulation is sufficient.

IV. FORMAL ANALYSIS OF ALGORITHM

In this section, we argue the correctness of our integer
program formulation, i.e., that it produces a correct optimal
rule reordering.

A. Semantics of Firewalls

We begin our analysis by formally defining the semantics
of firewall rule sequences. Our semantic definition uses a set-
theoretic model of the problem to facilitate the correctness
proof. We first let P be the set of all distinct packets. We
make no assumptions about the information contained in the
packets.

For our semantic definition, we need to abstractly differen-
tiate between the actions that a firewall can take on a packet.
For generality, we are not concerned with the purpose of these
actions.

A The set of all packet actions. Without loss of generality,
we assume A = {accept, reject}.

R The set of all firewall rule sequences, i.e., R =: {r|r :
[1, n] → P(P) × A ∧ n ∈ N}. An individual rule is defined
as an ordered pair of matched packets (a subset of P) and
the taken action (an element of A). Note that we use [i, j] to
denote the inclusive range of integers {v | i ≤ v ≤ j∧v ∈ N}.
We use the term rule sequence rather than ACL to mirror the
definition more closely.

packets : P(P)×A→ P(P) A function that projects a
rule to packets that the rule matches: packets(S, a) = S.

action : P(P)×A→ A A function that projects a rule
〈S, a〉 to its action: action(S, a) = a.

Notice that our definition of a firewall rule abstracts the
notion of packet predicates by instead considering the set of
packets matched. This not only simplifies the analysis, it also
ensures generality with respect to predicate languages.

We now have the necessary background to introduce a
semantic definition of rule sequences.

σ : R× P → A A function that maps rule sequences and
packets to actions. This function in effect defines that the
action taken on a packet for a given rule sequence is the action
of the least matching rule, i.e.,

σ(r, s) = a if

⎛
⎝ ∃i ∈ [1, |r|] � s ∈ packets(ri)
∧ a = action(ri)
∧ ∀j < i � s /∈ packets(rj)

⎞
⎠

Σ: R→ P ×A The semantic function, Σ, maps rule se-
quences to a complete classification of the entire packet space.
This function models the core semantics of rule sequences:

Σ(r) = {(s, a)|s ∈ P ∧ σ(r, s) = a}
We now focus on concepts relevant to rule permutations

and rule-based partitions of the packet space. The following
definitions are provided for this purpose.

perm : R→ P(R) The function mapping rule sequences
to all permutations:

r′ ∈ perm(r) off

⎛
⎝ |r| = |r′| ∧∃δ � δ : [1, |r|]↔ [1, |r|] ∧

(∀i ∈ [1, |r|] � ri = r′δ(i))

⎞
⎠

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 1, 2009 at 12:59 from IEEE Xplore. Restrictions apply.

YUAN et al.: A GENERAL FRAMEWORK FOR BENCHMARKING FIREWALL OPTIMIZATION TECHNIQUES 233

≈r The relation ≈r relates packets that are matched by
the exact same rules in rule sequence r:

s1 ≈r s2 Giff

(∀i ∈ [1, |r|] � s1 ∈ packets(ri)⇔
s2 ∈ packets(ri)

)

Γ : R→ P(P(P)) The function Γ maps rule sequences
to a partition of P where any two packets of a single block
are matched by the exact same rules: Γ(r) = P/ ≈r.

Φ : R× P(P) ��� A: A partial function mapping subsets
of P to actions, providing all packets in the subset will have
the same action for the rule sequence:

Φ(r, S) = c eff ∀s ∈ S � σ(r, s) = c

B. Correctness of Algorithm

We now have the suitable definitions in place to begin our
analysis. We first show that regardless of the rule permutation,
if two packets are related by ≈r, the same action will be taken
on both of them.

Lemma 1 (≈r implies identical action): Let r be some
rule sequence in R. For any two packets s1, s2 ∈ P such
that s1 ≈r s2, it follows that σ(r, s1) = σ(r, s2).

Proof: Consider any two packets s1, s2 ∈ P such that
s1 ≈r s2. By the definition of ≈r, we have ∀i ∈ [1, |r|] �
s1 ∈ packets(ri) ⇔ s2 ∈ packets(ri). Now assume that
σ(r, s1) = a for some action a ∈ A. Then there must exist
some i such that s1 ∈ packets(ri)∧∀j < i�s1 /∈ packets(rj).
Furthermore, action(ri) = a. Since s1 ≈r s2, it follows that
s2 ∈ packets(ri) ∧ ∀j < i � s2 /∈ packets(rj). Thus, by
the definition of σ, σ(r, s2) = action(ri) = a. Therefore,
σ(r, s1) = σ(r, s2).

We can also show that permuting a rule sequence has no
effect on the partition. This is intuitive, as the definition of Γ
does not depend on the order of rules, but rather the presence
of rules in a rule sequence.

Lemma 2 (perm preserves ≈r): Let r ∈ R and r′ ∈
perm(r). For any two packets s1, s2 ∈ P , s1 ≈r s2 ff
s1 ≈r′ s2. Stated alternatively, Γ(r) = Γ(r′).

Proof: Suppose that there are two packets s1, s2 ∈ P
such that s1 ≈r s2. By the definition of ≈r, ∀i ∈ [1 :
|r|] � s1 ∈ packets(ri) ⇔ s2 ∈ packets(ri). Since r′ is
a permutation of r, there exists a remapping function, δ,
such that ∀i ∈ [1 : |r|] � r′δ(i) = ri and therefore that
∀i ∈ [1 : |r|] � s1 ∈ packets(r′δ(i)) ⇔ s2 ∈ packets(r′δ(i)).
Because δ is a bijection from [1 : |r|] to [1 : |r|], so it follows
that ∀i ∈ [1 : |r|] � s1 ∈ packets(r′i) ⇔ s2 ∈ packets(r′i).
Thus s1 ≈r′ s2. Symmetrically, we can show that for any two
packets s1, s2 ∈ P , s1 ≈r′ s2 implies that s1 ≈r s2, thus
concluding the proof.

Theorem 3: Let r, r′ ∈ R such that r′ ∈ perm(r). The
two rule sequences r and r′ are semantically equivalent, i.e.,
Σ(r) = Σ(r′), if ∀γ ∈ Γ(r) � Φ(r, γ) = Φ(r′, γ).

Proof: First, by Lemma 2, Γ(r) = Γ(r′). Now suppose
that Σ(r) = Σ(r′). By Lemma 1, for all γ ∈ Γ(r), Φ(r, γ)
and Φ(r′, γ) are defined. Suppose that for some γ ∈ Γ(r),
Φ(r, γ) �= Φ(r′, γ). Then there exists some s ∈ γ such that
σ(r, s) �= σ(r′, s). However, this would imply that Σ(r) �=
Σ(r′), which contradicts the assumption that Σ(r) = Σ(r′).
Thus Φ(r, γ) = Φ(r′, γ).

Conversely, suppose that for all γ ∈ Γ(r), Φ(r, γ) =
Φ(r′, γ). Let S and S′ be two sets such that S = {(s, a) |
s ∈ γ ∧ Φ(r, γ) = a ∧ γ ∈ Γ(r)} and S′ = {(s, a) | p ∈
γ ∧ Φ(r′, γ) = a ∧ γ ∈ Γ(r)}. By the hypothesis, S = S′.
Also, by the definition of Φ, S = {(s, a) | s ∈ γ ∧ σ(r, s) =
a ∧ γ ∈ Γ(r)} and S′ = {(s, a) | s ∈ γ ∧ σ(r′, s) = a ∧ γ ∈
Γ(r′)}. Now since Γ(r) = Γ(r′) defines a partition of P ,
we have that S = {(s, a) | s ∈ P ∧ σ(r, s) = a} and
S′ = {(s, a) | s ∈ P ∧σ(r′, s) = a}. Finally, by the definition
of Σ, Σ(r) = S = S′ = Σ(r′).

Stated more simply, Theorem 3 asserts that a permutation
of rule sequence r is only semantically equivalent to r when
for each block in Γ(r) the action of the first matching rule is
the same as that of the first matching rule for r.

By reducing the semantic equality of permutations to check-
ing for identical quality on large blocks of the packet space,
we can simplify our firewall optimization algorithm so that
it needs not consider the action of all packets. The blocks of
Γ(r) define a very coarse abstraction of the packet space that
will always yield a correct analysis for permuted rules.

We now return to the integer program formulation of
Section III. We will begin with more precise definitions used
in the integer program.

n, m The value n is the length of the rule sequence r,
while m is the number of blocks in Γ(r), i.e., n = |r| and
m = |Γ(r)|.

γ : [1 : m]→ P(P) For indexing purposes, we will as-
sume an arbitrary ordering of the blocks in Γ(r). We will
denote this as a sequence γ.

ri,j A Boolean variable (over 0 and 1) that is set to 1 only
when rule ri of the initial sequence is moved to position j in
the current permuted sequence (where i, j ∈ [1 : n]).

gi,j A Boolean variable (over 0 and 1) that is set to 1
only when the block γi has a matching rule with the same
action as Φ(r, γi) at position j, without any matching rule
with a different action in a position less than j (where i ∈ [1 :
m], j ∈ [1 : n]).

wi: The weight of the block γi.

matches : [1 : m]→ [1 : n] A function that maps a given
block γi to the set of rules that match packets of γi and have
the same action as Φ(r, γi). For showing correctness, we will
assume that each partition has at least one matching rule.
This requires that the default policy must be made explicit
by placing a general rule with the same action at the end of
the ACL.

after : [1 : m]→ [1 : n] A function that maps a given
block γi to the set of rules that match γi but have a different
action from Φ(r, γi) (and hence must not be the first matching
rule for the block).

Theorem 4 (Main): Let r be some rule sequence in R. The
solutions to the integer program describe exactly the set of rule
permutations that are semantically equivalent to r.

Proof: First we show that a solution to the integer
program are permutations of the original rule. Consider a set
δ containing (i, j) whenever ri,j = 1. Constraints A ensure
that for all i in [1 : n], there exists a unique j such that ri,j

is 1. It follows that δ is a function mapping [1 : n]→ [1 : n].
Constraints B ensure that for all j in [1 : n], there exists a

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 1, 2009 at 12:59 from IEEE Xplore. Restrictions apply.

234 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 5, NO. 4, DECEMBER 2008

unique i such that ri,j is 1. This yields that δ is a bijection,
and thus that the solution describes a permutation of r.

Suppose that for some constraint satisfying assignment
describing permutation r′, there exists some block, γi, such
that Φ(r, γi) �= Φ(r′, γi). For r′, γi’s first matching rule, j,
must have a different action than the first matching rule for
r, so it must be in after(i). However, it would contradict the
constraints D for j to be the first matching rule of i, because
the block γi must have a rule that matches it before j. It
therefore cannot be the case that Φ(r, γi) �= Φ(r′, γi), so
Φ(r, γi) = Φ(r′, γi). By Theorem 3, Σ(r′) = Σ(r).

Suppose that there is a permutation of r′ such that Σ(r′) =
Σ(r). Since r′ is a permutation of r, Constraints A and B
can be satisfied by setting the ri,j variables appropriately. We
will also set gi,j = 1 for all γi that have first matching rule
j in r′. Since there is only one first matching rule for all
blocks, Constraints C are satisfied. By Theorem 3, for all γi,
Φ(r, γi) = Φ(r′, γi). It must follow that all rules in after(γi)
must occur after the matching rule of γi, so constraints D are
satisfied. If constraints E were not satisfied, then there would
have been some γi and block position j such that gi,j = 1,
while there is no rule matching γi at position j. However, we
have assigned gi,j = 1 only when the first matching rule is
at position j, so this cannot be. Thus constraints E must be
satisfied, and the permutation has a valid assignment.

We conclude that the satisfying solutions of the integer
program describe precisely the set of semantics-preserving
permutations of r.

Theorem 4 guarantees that all and only valid permutations
will be captured by the integer program. Because the integer
program selects the minimum permutation with respect to cost,
we produce rule reorderings with the minimum cost. It is
worth noting that although previous work [12] has claimed to
produce optimal rule orderings, but because of the issue with
position-dependent rule weight, it in fact cannot guarantee
optimal rule reordering (see Section V).

C. Time Complexity Analysis

We now discuss the time complexity of the firewall opti-
mization problem and the worst-case time complexity of our
algorithm.

Hamed and Al-Shaer show that producing optimal rule
orderings of ACLs is NP-complete [12] by a reduction from
job scheduling, a well-known NP-complete problem. Thus, in
theory, this problem is intractable, unless P = NP .

We now analyze the complexity of our algorithm. The
partition of the packet space for an ACL may be exponential
in the size of the ACL in the worst case. However, it is
worth noting that typical ACLs do not exhibit this behavior
and they often have blocks linear in number in the ACL size
from our experience in analyzing a few production firewall
configurations (see Section VI for more details). Next, the
integer programs can be generated in polynomial time and
are quadratic in size, both in the size of partitions. Finding
valid solutions to integer programs is NP-complete. Though
our algorithm has a worst-case high complexity, the algorithm
is feasible for many practical scenarios as will be shown in
Section VI.

V. HEURISTIC APPROACHES

In this section, we discuss a few heuristic algorithms
for firewall rule optimization: two existing ones and a new
algorithm that we introduce in this paper. These will be com-
pared empirically within our framework in the next section.
We will also survey additional related work on fast packet
classification.

A. Rule-based Optimization

Cisco, in its ACL Manager [7], provides an ACL Optimizer
that sorts rules according to the number of hits each rule
receives. Acharya et al. [1] estimate traffic profile based on
simple counters of rule hits and perform optimization based
on this. A rule receiving more matching packets is considered
“hot” and moved earlier. Cohen and Lund [8] use a greedy
algorithm to iteratively move the rule that matches the most
packets as early as possible. Hamed and Al-Shaer [12] propose
the use of binary integer programming to optimize rule order
based on “rule weights,” which are evaluated based on both
hits and resent.

Essentially, all these rule-based optimization techniques [1,
7, 8, 12] perform traffic-aware rule reordering based on the
weights computed once using the original rule set. However,
the number of hits received by each rule is dependent on
the rule position in the firewall configuration and hence the
“weight” will change as the rule is moved up or down the list.
None of these prior efforts takes into account this subtlety, and
hence the resulting rule orders are sub-optimal.

The following are three major drawbacks of these rule-based
optimization techniques:
Position-dependent rule weight: Rule-based optimization
cannot find the global optimal for two reasons. First, rule-
based optimization measures the weights of a rule directly,
using a hit-based traffic profile that counts the number of
packets hit each rule. Hit-based traffic profile does not account
for the fact that the preceding rules may shield the “hits” for
later ones. Consider rules R1 and R2 in Figure 4 (ignore
R3 for now). The current traffic profile may find that R1

and R2 have weights of 7 and 5 respectively and therefore
determine that the current order is optimal with a total cost
of 7 ∗ 1 + 5 ∗ 2 = 17. On the other hand, our approach will
discover that the intersection of R1 and R2 has a weight of 5.
The swapped order will have a total cost of 10∗1+2∗2 = 14
instead.
Overly-conservative rule precedence constraints: Another
cause of sub-optimality for rule-based optimization is that
the rule-precedence constraints are unnecessarily conservative.
Consider the case illustrated in Table II. If one generates a
rule precedence for every pair of rules that have non-empty
intersection but different actions, the current order will be
the only feasible solution. However, among the six possible
permutations of R1, R2, and R3, only 〈R2, R1, R3〉 and
〈R2, R3, R1〉 are infeasible. Any of the other four are feasible
and should be considered, as in our approach.
Instability due to position-dependent weight: Rule-based
optimization not only cannot find optimal rule orderings, but
also may require multiple steps of change, even if the actual
traffic characteristics remains the same. Consider Figure 4

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 1, 2009 at 12:59 from IEEE Xplore. Restrictions apply.

YUAN et al.: A GENERAL FRAMEWORK FOR BENCHMARKING FIREWALL OPTIMIZATION TECHNIQUES 235

6 R3

3 2 R2

2 5 R1

Fig. 4: Hit-based profile.

TABLE II: Example ACL where P1, P2, P3, and P4 denote
disjoint sets of packets.

R1: accept P1, P2

R2: deny P1, P3

R3: accept P1, P4

again, but now focus on R3. On the first attempt, rule-based
optimization will only move R3 before R2. However, once
that happens, the weight of R3 will increase from 6 to 8. The
optimization algorithm will then move R3 before R1. Instead,
our optimization framework attempts to capture the subtle
interactions among firewall rules and their relative positions
in order to compute the optimal rule ordering.

B. ACL Splitting

We now introduce a three-staged algorithm that: (1) divides
a given ACL into cerebellums; (2) solves the cerebellums; and
(3) merges the results into a solution for the original ACL. This
algorithm is more scalable than our algorithm in Section III
because of the smaller problems used for the computationally
expensive integer program instances. Extracting the subpro-
grams requires quadratic time in the size of the ACL, as does
the merging stage. The main insight for this approach is that a
globally aware algorithm needs only to focus on the rules that
interact with one another while the outputs can be combined
with a locally guided algorithm.

In the first phase, an ACL is split into rule groups by
extracting the connected components of the rule intersection
graph, an undirected graph with rules as nodes and edges
between pairs of overlapping rules. In the case illustrated in
Figure 5, four groups are created: G1 = {a, b, c}, G2 =
{e, f}, G3 = {d}, and G4 = {g}. Since all groups are
independent of each another, regardless of how groups are
interleaved, the weights of individual rules do not change since
the relative order of any rule in a single group does not. Using
Tarn’s algorithm this can be performed in linear time with
respect to the size of the graph, and thus quadrille time with
respect to the number of rules in the ACL [18].

We optimize each of the groups independently by using
the integer program formulation in Section III. The ACLs we
use for evaluation in Section VI show that the individual rule
groups are often small. This is consistent with the low rule
interactions we expect from ACLs used in practice.

Following the subprogram solutions, we interleave the re-
sulting subproblem ACLs into one ACL. With the final ACL,
we apply a greedy algorithm [8] that attempts to swap any two
consecutive rules as long as the swap yields a lower cost and
does not violate the semantic meaning of the original ACL.

a b g e

c d f

Fig. 5: A rule intersection graph.

TABLE III: ACLs used in our evaluation.

ACL Source Rules Blocks Groups
(#) (#) (#)

A Major ISP 854 946 11
B A’s core 54 146 10
C Major ISP 24 49 4
D Major ISP 141 149 2
E D’s core 13 21 1
F Major ISP 23 27 2

Note that when any rule is inserted between rules from
a single subproblem, the relative order of the rules in that
subproblem may no longer be optimal, as the cost for rule
placement is no longer consistent. Thus, this algorithm does
not necessarily yield optimal ACL orders. In Section VI, we
will evaluate how this algorithm performs in practice.

C. Fast Packet Classification

Much research [3, 9, 10, 16, 17] has investigated advanced
data structures, such as decision trees, for packet classification.
A survey by Gupta and Milken [11] offers a thorough sum-
mary of this area. These algorithms essentially trade memory
space for faster lookup speed. While they offer significantly
better upper-bounds for lookup time, the scalability of these
algorithms remains a challenging issue. This is particularly
true when more header fields or even data part of a packet
need to be inspected. To exploit both the scalability of the
list structure and the speed of the advanced data structures,
Baboescu et al. [2] propose to use these advanced data struc-
tures to quickly identify a list of potential matching rules.
Our algorithm can be extended to determine the optimal
order of the list component and therefore further improve the
performance of their work.

Baboescu and Varghese, in their work on Aggregated Bit
Vector [4], propose to rearrange rules so that rules with
the same value in certain fields are contiguous. This helps
to localize the matches and to reduce false matches in the
original Bit Vector algorithm. Their algorithm is based on
the configuration alone and does not take traffic profile into
account. Partition-based traffic profile can help further improve
the performance of ABV.

VI. EMPIRICAL EVALUATION

We have implemented our evaluation framework to mea-
sure the optimality of several algorithms: (1) the optimal
partition-based algorithm proposed in this paper (Partition);
(2) the heuristic ACL splitting algorithm proposed in this
paper (Split); (3) Hamed and El-Shies rule-based algorithm
(Rule) [12]; and (4) Cohen and Lund’s Extended Greedy
algorithm (Greedy) [8].

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 1, 2009 at 12:59 from IEEE Xplore. Restrictions apply.

236 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 5, NO. 4, DECEMBER 2008

TABLE IV: Costs and running times (in seconds) of the four algorithms on the ACLs described in Table III.

ACL Original Partition Split Rule Greedy
(cost) (cost) (time) (cost) (time) (cost) (time) (cost) (time)

A 331.893 ∞ ∞ 119.710 1111.494 59.547 1582.857 192.230 0.799
B 12.771 6.078 13.754 12.640 31.908 7.102 5.649 7.830 0.056
C 7.607 3.769 3.136 3.857 12.513 4.585 3.105 4.948 0.024
D 50.769 17.238 1690.571 18.471 17.447 17.238 36.909 28.684 0.095
E 3.639 3.309 3.090 3.309 3.156 3.309 3.059 3.366 0.009
F 9.241 5.138 3.061 5.656 6.349 5.138 3.104 5.914 0.029

We implemented each algorithm, using shared code for
generating traffic profiles, calculating costs, and generating
integer programs. We employed an industrial-strength integer
program solver, CPLEX [13], to solve our integer programs.
For integer programs, the solver uses a branch and bounding
algorithm with several heuristics to find optimal solutions.
We ran our experiments on a system with a Xeon 2.8Ghz
processor, 2GB of RAM, and Linux kernel 2.6.16.

For our evaluation, we have used a number of ACLs.
Table III shows descriptions of these ACLs. For each ACL,
we show from where we obtained it (Source), the number of
rules (Rules), the number of blocks (Blocks), and the number
of independent sub-problems (Groups).

ACL A is an 865 rule ACL deployed by a major ISP. ACL B
is derived from ACL A by removing the rules that do not
intersect with any other rules. We do this to understand how
the algorithms perform on problems with potentially complex
rule interactions. Note that by removing these independent
rules, the remaining block count is high with respect to the
number of rules. ACL C is also from a major ISP, though
it is small and intended for a specific network. ACL D is a
reasonably sized ACL deployed by a major ISP. Notice that
for this ACL, there are not many complex rule interactions,
as the number of distinct blocks is nearly the same as the
number of rules. ACL E is identical to ACL D, however we
have removed the independent rules again. ACL F is another
small ACL deployed by a major ISP though it is specific
to a small network. Notice that we include data about the
number of groups of each ACL. This number is essentially the
number of distinct sub-problems for the splitting algorithm,
though we count all independent rules as one group, rather
than exacerbating the count by such rules.

In our evaluation, we attempted several traffic profiles with
different distributions. Note that traffic profiles are jointly
determined by the arriving packets and the ACL written
by individual administrators. Our approach is general and
can operate using any plausible traffic distributions since
our optimization framework does not assume any. In this
paper, we choose to present our results based on traffic
profiles consistent with the Zipf distribution, which is the only
measured distribution we are aware of. The weights of the
blocks were chosen randomly in conformance with the Zipf
distribution with a parameter of 1.2. This is based on Cohen
and Lund’s observation of a strong Zipf-like pattern where
few rules in each firewall are responsible for resolving most
of the traffic [8].

The results are summarized in Table IV. We present the cost
of the ACLS before and after each optimization techniques and

they running time of each algorithm on every ACL. The cost
affects directly the performance of a firewall and is the focus
of this paper. The running time of optimization algorithms
does not impact the firewall performance, but it is included to
reflect the Royce’s requirement of the optimization system.

For ACL A, we were not able to run Partition, as it
exhausted the available memory. Notice that Rule performed
the best in terms of cost, though with a slightly worse running
time than Split. Split produced an ordering with cost in
between that of Greedy and Rule.

For ACL B (i.e., ACL A’s core), Partition obtains an
ordering with cost smaller than all the others, though also with
a significantly longer running time. Split’s cost is unusually
high, more so than Greedy and only slightly better than the
original cost. Split’s behavior seems to have the most variance
among the four algorithms.

For ACL C, Partition and Split lead in cost attribution,
while also performing well in running time. The difference
in cost is significant when considering the small cost of the
ACL itself and Greedy’s cost as a base value. We notice that
for this ACL, there is a very high ratio of blocks to rules,
and we postulate that a more involved ACL with an intricate
partition leaves more room for optimization by partition-based
algorithms. Surprisingly, Split takes more time than Partition
to process this ACL. We attribute this to high startup cost for
each sub-problem (there are four sub-problems). Although the
total time reported by CPLEX for solving the sub-problems
was less than one second, each sub-problem invoked a new
CPLEX instance, incurring the cost of program loading and
initialization, and ultimately adding an additional 30 seconds
to the running time. The other integer program-based solutions
invoked only one CPLEX instance. This factor also had a
noticeable effect on the times for ACL C and ACL F.

We notice that for ACL D, a partition based algorithm
does not yield any cost benefit in comparison with a rule
based algorithm. Looking at the count of blocks, we see
that it is relatively small in comparison with the number of
rules. It is very likely that for this partition, a rule-based
algorithm is suitable for optimization. We see that Partition
required significantly more processing time than the other
algorithms. This is expected as this ACL is the largest of those
it processed.

ACL E and ACL F seem to be particularly simple. Rule-
based partitioning is sufficient for optimality, and greedy algo-
rithms do nearly as good as optimal. None of the algorithms
required an unusual amount of time.

We can draw a number of conclusions from our results. The
first of these is that some ACLs are likely to require partition

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 1, 2009 at 12:59 from IEEE Xplore. Restrictions apply.

YUAN et al.: A GENERAL FRAMEWORK FOR BENCHMARKING FIREWALL OPTIMIZATION TECHNIQUES 237

 0

 2

 4

 6

 8

 10

 12

 14

 16

Split GreedyRulePartition Original

Fig. 6: Cost quartiles of the orderings of ACL C produced by
the evaluated algorithms when run on 100 profiles.

aware algorithms for optimality. These ACLs are likely to
be those that have a high number of blocks in comparison
with the total number of rules. We see that locally aware
algorithms, like Greedy, do yield an appreciable savings in
cost, while incurring an almost negligible computational load.
Rule-based algorithms yield considerable cost advantages be-
yond a local algorithm, and seem to scale well enough for
real scenarios. We believe this algorithm may be of value for
industry practitioners, despite the fact that it is not optimal.
The partition-based algorithm is unlikely to scale to large
ACLs without significant algorithm optimization and tuning,
though it helps confirm how close other approaches are to the
optimal bound. Split seems to have high variance in its results,
though the cost advantage may be significant enough and
the computational requirements small enough that it can be
considered for deployment. We also notice that with our real
ACLs, that partition sizes rarely doubles the number of rules.
This suggests that partition-based algorithms, if optimized
further, can be of practical use.

So far, the results in our evaluation are specific to one
randomly chosen profile. We also attempted seeding 100
different profiles for ACL C to examine how sensitive these
results are. Figure 6 summarizes the costs. The results seem
consistent, and give us a higher level of confidence in the
analysis of our previous results. Worth notice is that the global
algorithms seemed insulated from the high variance of the
original costs. More local algorithms, like Split and Greedy,
are more variant, as the initial orderings may significantly
change the final orderings. Despite this variance, Split had a
slightly lower median value than Rule, giving some credence
to its deployability.

VII. CONCLUSIONS

We have presented a general framework for evaluating op-
timization techniques for rule-based firewalls. This framework
first divides the packet space into partitions where all the
packets in any given partition match the same set of firewall
rules. For each partition, the framework calculates the cost for
the firewall to process all the packets in the partition based
on traffic profile. Then, using these partitions, the framework

generates the dependency of all the rules in the firewall.
Finally, the framework formulates firewall optimization as
an integer programming problem. Based on the framework,
we developed a firewall optimization algorithm, and formally
proved that our algorithm produces the optimal rule ordering.
We applied our framework to empirically evaluate a few
heuristic optimization algorithms: two existing ones and a new
divide and conquer algorithm introduced in this paper. This
framework allowed us to measure how close to the optimum
these heuristic algorithms can produce rule orderings and
the typical running time of these algorithm. Consequently, it
enable us to make informed choice of optimization techniques.

REFERENCES

[1] S. Acharya, J. Wang, Z. Ge, T. F. Zane, and A. Greenberg, “Traffic-aware
firewall optimization strategies,” in Proc. International Conference on
Communications, 2006.

[2] F. Baboescu, S. Sin’s, and G. Varghese, “Packet classification for core
routers: is there an alternative to CAMs?” in Proc. IEEE INFOCOM,
pp. 53–63, 2003.

[3] F. Baboescu and G. Varghese, “Scalable packet classification,” in Proc.
ACM SIGCOMM, pp. 199–210, 2001.

[4] F. Baboescu and G. Varghese, “Scalable packet classification,”
IEEE/ACM Trans. Networking, vol. 13, no. 1, pp. 2–14, 2005.

[5] R. E. Bryant, “Symbolic Boolean manipulation with ordered binary-
decision diagrams,” ACM Comput. Surv., vol. 24, no. 3, pp. 293–318,
1992.

[6] Cisco Systems Inc., Cisco PIX 500 Series Security Appliances. http:
//www.cisco.com/en/US/products/hw/vpndevc/ps2030/index.html.

[7] Cisco Systems Inc., User Guide for Access Control List Manager 1.6,
2004.

[8] E. Cohen and C. Lund, “Packet classification in large ISPs: design and
evaluation of decision tree classifiers,” in Proc. ACM SIGMETRICS, pp.
73–84, 2005.

[9] P. Gupta and N. Mickey, “Packet classification on multiple fields,” in
Proc. ACM SIGCOMM, pp. 147–160, 1999.

[10] P. Gupta and N. McKeown, “Packet classification using hierarchical
intelligent cuttings,” IEEE Micro, vol. 20, no. 1, pp. 34–41, Jan./Feb.
2000.

[11] P. Gupta and N. McKeown, “Algorithms for packet classification,” IEEE
Network, Mar. 2001.

[12] H. Hamed and E. Al-Shaer, “Dynamic rule-ordering optimization for
high-speed firewall filtering,” in Proc. ACM Symposium on InformAtion,
Computer and Communications Security, pp. 332–342, 2006.

[13] ILOG Inc., ILOG CPLEX. http://www.ilog.com/products/cplex/.
[14] S. Joanne and V. Jacobson, “The BSD packet filter: a new architecture

for user-level packet capture,” in USENIX Winter, pp. 259–270, 1993.
[15] R. Russell, Linux 2.4 Packet Filtering Howto. http://www.netfilter.org/

documentation/HOWTO/packet-filtering-HOWTO.html.
[16] V. Srinivasan, S. Suri, and G. Varghese, “Packet classification using

Tully space search,” in Proc. ACM SIGCOMM, pp. 135–146, 1999.
[17] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, “Fast and

scalable layer four switching,” in Proc. ACM SIGCOMM, pp. 191–202,
1998.

[18] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM J.
Computing, vol. 1, no. 2, pp. 146–160, 1972.

[19] L. Yuan, C.-N. Chuah, and P. Mohapatra, “ProgME: towards Pro-
grammable network MEasurement,” in Proc. ACM SIGCOMM, 2007.

[20] L. Yuan, J. Mai, Z. Su, H. Chen, C.-N. Chuah, and P. Mohapatra,
“FIREMAN: A toolkit for FIREwall Modeling and ANalysis,” in Proc.
IEEE Symposium on Security and Privacy, pp. 199–213, 2006.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 1, 2009 at 12:59 from IEEE Xplore. Restrictions apply.

238 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 5, NO. 4, DECEMBER 2008

Ghassan Misherghi is a software engineer at
Google working on Custom Search. He is focused on
the performance and reliability concerns of running
web services. Ghassan is also interested in a wide
variety of software quality related topics, ranging
from automated debugging to static partial verifica-
tion.

Lihua Yuan is currently a Research Software De-
velopment Engineer at Microsoft. He received his
Ph.D. in Electrical and Computer Engineering from
the University of California, Davis in 2008. His re-
search interests are in the area of computer networks
and distributed systems, with a focus on network
management, measurement, and security.

Zhendong Su is an Associate Professor in Com-
puter Science at UC Davis, where he specializes
in programming languages, software engineering,
and computer security. He received both his M.S.
and Ph.D. degrees in Computer Science from UC
Berkeley, and both his B.S. degree in Computer
Science and B.A. degree in Mathematics from UT
Austin. He is the recipient of a Best Paper Award
from the European Association for Programming
Languages and Systems (1998), an ACM SIGMOD
Distinguished Paper Award (2004), an NSF CA-

REER Award (2006), and the UC Davis College of Engineering Outstanding
Junior Faculty Award (2007).

Chen-Nee Chuah is currently an Associate Pro-
fessor in the Electrical and Computer Engineering
Department at the University of California, Davis.
She received her B.S. in Electrical Engineering
from Rutgers University, and her M.S. and Ph.D.
in Electrical Engineering and Computer Sciences
from the University of California, Berkeley. Her
research interests lie broadly in computer networks
and wireless/mobile computing, with emphasis on
Internet measurements, network anomaly detection,
network management, multimedia, unaligned social

networks, and vehicular ad hot networks. She received the NSF CAREER
Award in 2003, and the Outstanding Junior Faculty Award from the UC
Davis College of Engineering in 2004. In 2008, she was selected as a
Chancellor’s Fellow of UC Davis. She has served on the executive/technical
program committee of several ACM and IEEE conferences and is currently
an Associate Editor for IEEE/ACM TRANSACTIONS ON NETWORKING.

Hao Chen is an Assistant Professor in the De-
partment of Computer Science at the University of
California, Davis. He received his B.S. and M.S. in
Biomedical Engineering from Southeast University
in 1991 and 1994, respectively, and his Ph.D. in
Computer Science from the University of Califor-
nia, Berkeley in 2004. His research interests are
the area of computer security, including software
security, network security, cellular network security,
and Web security. He received the National Science
Foundation CAREER Award in 2007. He has served

on the technical program committees of several ACM and IEEE-sponsored
conferences.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 1, 2009 at 12:59 from IEEE Xplore. Restrictions apply.

