Validating the System Behavior of Large-Scale Networked Computers

Chen-Nee Chuah
Robust & Ubiquitous Networking (RUBINET) Lab
http://www.ece.ucdavis.edu/rubinet
Electrical & Computer Engineering
University of California, Davis
Networked Computers: Some Observations

- Different capabilities/constraints
 - Getting smaller & getting bigger
- Different requirements
- Explosive growth in numbers

We know how individual component/layer behaves, but when they are inter-connected and start interacting with each other, we become clueless!
What do we care about when we design networks?

- End-to-end behavior
 - Reachability
 - Performance in terms of delay, losses, throughput
 - Security
 - Stability/fault-resilience of the end-to-end path
 - …

- System-wide behavior
 - Load distribution within a domain
 - Stability/Robustness/Survivability
 - Manageability
 - Evolvability and other X-ities
 - J. Kurose, INFOCOM’04 Keynote Speech
How do we know when we get there?

- We know how to do the following fairly well:
 - Prove correctness/completeness of stand-alone system or protocol
 • E.g., algorithm complexity, convergence behavior
 - Look at steady state, worst-case, and average scenario
 • E.g., Queuing models
 - Run simulations/experiments to show improvement of protocol/architecture Z over A, B, C, D ….

- What is lacking:
 - **End-to-end Validation** of the design solution or system behavior
 • Is the system behavior what we really intended?
 • How do we verify what type of behaviors/properties are ‘correct’ and what are ‘abnormal’?
 - **Verification of the system ‘dynamics’**, e.g., how different components or network layers interact
Challenges

- End-to-end system behavior depends on:
 - Physical topology
 - Routing protocols
 - BGP Policies
 - NAT boxes, firewalls, packet filters, packet transformers
 - Traffic Demand
 - Logical topology

- Messy dependency graphs => A lot to model if we truly want to understand and able to validate system behavior
Problem Areas

Validating

1. End-to-end network properties
 - Example: end-to-end reachability and/or security

2. Interactions between multiple control loops (across protocol layers or between multiple entities)
 - Example: overlay/IP-layer routing

3. Measurement/monitoring methodologies
 - How do we know we’re measuring the traffic features that are really important instead of distorting them?
End-to-End Reachability/Security

- When user A sends a packet from a source node S to a destination node D in the Internet
 - How do we verify there is indeed a route that exist between S and D?
 - How do we verify that the packet follow a certain path that adheres to inter-domain peering relationships?
 - How do we verify that only this end-to-end connection satisfy some higher-level security policy?
 - E.g. Only user A can reach D and other users are blocked?

- Answer depends on:
 - Router configurations & BGP policies
 - Packet filters along the way: Firewalls, NAT boxes, etc.
Example: Network of Firewalls

Distributed Firewalls

Secured Intranet

DeMilitarized Zone (DMZ)

Internet

ISP A

ISP B

INTERNET
Validating End-to-End Reachability/Security

- Effectiveness of firewalls depend on (mis)configuration!
 - Policy violation
 - Inconsistency: shadowing, generalization, …

- How do we verify configuration of firewall rules?
 - Borrow model checking techniques from software programming

- Example static analysis approach
 - Control flow analysis: possible flow path
 - Data flow analysis: catching anomalies
 - Binary Decision Diagram (BDD) representations
IPX Model
- Multiple access list in sequential order

IPtable / Netfilter Model
- Modeled as function calls
Binary Decision Diagram (BDD) Representations

Source Port < 49152

1023 < S. Port < 49152

Source IP = 10.0.0.0/8

Source Port > 1023
Network of Firewalls: Remaining Issues

- How do we validate/verify dynamic behavioral changes?
 - With multi-homing and dynamic load-balancing, the end-to-end path and sequence of firewalls traversed could change over time
 - Adaptation of firewall rules on demand depending on applications

- How do we optimize firewall configurations?
 - Inter-firewall & inter-path optimization
 - Must interface with routing plane
 - Heavy traffic ‘accepted’ first?
 - Need to interact with traffic measurement/monitoring modules
Example 1: Overlay/IP-layer Interactions

- Overlays compete with IP-layer to control routing decisions
 - ISPs & overlays are unaware of decisions made by the other layer
 - Multiple overlay networks co-exist and make independent decisions

- Side Effects
 (a) Challenges to ISP’s Traffic engineering (TE)
 - Overlays shift and/or duplicate TM values, increasing the dynamic nature of the TM, making it harder to estimate
 - Harder to estimate Traffic Matrix (TM) essential for most TE tasks.
 (b) Multiple overlays can get synchronized
 - Interfere with load balancing or failure restoration, leading to oscillations
 (c) Coupling of multiple ASes
 - Overlay Networks may respond to failures in an AS by shifting traffic in upstream AS.
(b) Race Conditions & Load Oscillations

- Multiple overlays can get synchronized!

- Result of
 - Periodic nature of path probing process
 - Partial/full overlap of primary and alternate paths
- Could happen in real networks

Link load > 50 is overload
Related Studies

- Qiu et al investigate the performance of selfish routing of multiple co-existing overlays [QYZ03]
 - Optimal average latency is achieved at the cost of overloading some links
- Liu et al model interaction between IP traffic engineering and overlay routing as two-player game [LZ+05]

Other example problems

- Tuning IGP routing protocol parameters
 - Stability vs. Fast convergence
- TCP congestion control vs. IP traffic engineering
#3: Measurement/Monitoring Methodologies

- Network measurements/monitoring traditionally useful for network design and traffic engineering purposes
 - E.g., how to select optimal set of IGP link weights to route all OD pairs given a topology to distribute loads evenly across network.

- Increasingly important for anomaly detection & security forensics
 - E.g., online detection of DoS/DDoS attacks, worm/virus propagation, flash crowd, etc.
Measurement/Monitoring Methodologies

- **Challenges:** high data speed, limited storage
 - ‘Sampling’ is typically done to reduce overhead

- **Questions:**
 - What is the optimal sampling rate?
 - Does sampling preserve the traffic features that are crucial for anomaly detection (in addition to volume estimation for TE)?
 - Can we sample less if we collect measurements at more points?
Summary

1. Validate end-to-end security/reachability properties
 – Example: firewall
 – Useful toolkit:
 • Model checking from software programming
 • Combinatorial optimization

2. Model system dynamics and interactions between entities
 – Example: overlay/IP-layer routing
 – Borrow economic models: game theory

3. Verify measurement/monitoring methodologies
 – How do we know we’re measuring the traffic features that are really important instead of distorting them?